Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Митействовое задание для диагностического тестирования по дисциплине: Должность: ректор

Дата подписания: 20.06.2025 07:53:01

«Вычислительная математика»

2 курс, 3 семестр

Уникальный программный ключ: e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Квалификация	бакалавр		
выпускника			
Направление подготовки	09.03.02		
-	«ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ»		
Направленность (профиль)	«Безопасность информационных систем и технологий»		
Форма обучения	очная		
Кафедра-	Прикладной математики		
разработчик Выпускающая кафедра	Кафедра информатики и вычислительной техники		

Диагностический тест по дисциплине «Вычислительная математика»

Проверяем ая компетенц	Задание	Варианты отве	стов	Тип сложност и
ия ОПК- 1.1,ОПК- 1.2, ОПК-1.3	1. Указать в порядке логического следования основные этапы математического моделирования.	2) проверка практике и моди	патематической модели; качества модели на ификация модели; исследование и решение их математической	высокий
ОПК- 1.1,ОПК- 1.2, ОПК-1.3	2. Соотнести тип задачи и данные, подлежащие поиску.	 прямые; обратные; задачи идентификаци и. 	а) выходные данные; б) входные данные; в) параметры модели	высокий
ОПК- 1.1,ОПК- 1.2, ОПК-1.3	3. Указать основные этапы решения инженерной задачи на ЭВМ в порядке логического следования.	4) Предварител анализ свойств в 5) Выбор или метода; 6) Алг программировая 7) Отладка прог 8) Счет по програ Обработка результатов; 10) Использов	или построение и модели; вычислительной задачи; пьный (предмашинный) вычислительной задачи; построение численного горитмизация и ние; граммы; рамме; а и интерпретация	высокий
ОПК- 1.1,ОПК- 1.2, ОПК-1.3	4. Соотнести причины наличия погрешности решения задачи на ЭВМ и название, ей соответствующее.	1) Неустранимая погрешность; 2) Погрешность численного метода; 3) вычислительн ая погрешность.	а) Отсутствие полного соответствия математической модели и реального процесса, для описания которого она используется; б) Начальные данные известны лишь с некоторой погрешностью; в) Использование приближенных методов для решения задачи; г) При вводе данных в ЭВМ, выполнении арифметических операция и выводе	высокий

	Γ		
		результатов	
		происходит	
		округление.	
ОПК-	5. Указать число	_	средний
1.1,ОПК-	значащих цифр в		
1.2, ОПК-1.3	записи числа		
	$a^* = 0.0103000$.		
ОПК-	6. Пусть известно	_	средний
1.1,ОПК-	точное значение числа		
1.2, ОПК-1.3	a = 1.00000 и его		
	приближенно		
	вычисленное значение		
	$a^* = 0.99999$. Указать		
	число верных		
	значащих цифр в		
	записи числа a^* .		
ОПК-		1) 2(* .1*) 2) 2 .	DI TOCTATA
1.1,ОПК-		1) $\delta(a^*+b^*)$; a) δ_{\max} ;	высокий
1.1,OΠK- 1.2, ΟΠK-1.3	формулы относительной	2) $\delta(a^*-b^*)$: $\delta(a^*-b^*)$	
1.2, OHK-1.3		2) $\delta(a^*-b^*);$ $\begin{cases} 6) \nu \delta_{\max}; \\ B) \end{cases}$ $\delta(a^*b^*);$ $\delta(a^*)+\delta(b^*)+\delta(a^*)$	
	погрешности	3) $\delta(a^*b^*);$ $\delta(a^*)+\delta(b^*)+\delta(a^*)$; $\delta(a^*)+\delta(b^*)$. $\delta(a^*)+\delta(b^*)$.	$\delta(b^{\dagger})$
	арифметических	4) $\delta(a^*/b^*)$. ;	/ \ /
	операций, указанные в левом столбике с их	$(a \mid b)$	
		$\int_{\mathbb{R}^3} \delta(a^r) + \delta(b^r)$	
	верхними оценками,	$\frac{1}{1-\delta(b^*)}$.	
	указанными в правом столбике. Здесь	()	
	$\delta_{\max} = \max \left\{ \delta(a^*), \ \delta(b^*) \right\}$	\	
	a+b		
	1 1		
ОПК-	8. Найти абсолютную	_	средний
1.1,ОПК-	погрешность		
1.2, ОПК-1.3	вычисления, если		
	известно		
	приближенное		
	значение $a^* = 9.875$ и		
	точное значение		
	a = 10.		
ОПК-	9. Указать	1) Метод бисекции;	низкий
1.1,ОПК-	единственный	2) Метод простых итераций;	
1.2, ОПК-1.3	численный метод	3) Модифицированный метод прос	стых
	решения нелинейных	итераций;	
	уравнений, не	4) Метод Ньютона.	
	требующий		
	вычисления		
	производной.		
ОПК-	10. Указать	1) Метод бисекции;	средний
1.1,ОПК-	единственный	2) Метод простых итераций;	Родини
1.2, ОПК-1.3	численный метод	3) Модифицированный метод прос	стых
	решения нелинейных	итераций;	
	Pomonina nominemina	4) Метод Ньютона.	
<u> </u>	I	., -,	

	уравнений,		
	обладающий		
	квадратичной		
	скоростью		
	сходимостью.		
ОПК-	11. Выбрать один	1) Система линейных алгебраических	средний
1.1,ОПК-	ответ. Аббревиатура	уравнений;	
1.2, ОПК-1.3	СЛАУ означает	2) Сходящиеся линейные	
		аппроксимирующие уравнения;	
		3) Система левых абстрактных	
		уравнений;	
		4) Самые лучшие аналитические	
		уравнения.	
ОПК-	12. Указать несколько	1) Метод деления отрезка пополам;	средний
1.1,ОПК-	методов прямого	2) Метод золотого сечения;	_
1.2, ОПК-1.3	поиска минимума	3) Метод бисекции;	
	функции одной	4) Метод Ньютона.	
	переменной.		
ОПК-	13. Расставить этапы	1) Найти направление спуска \vec{p} ;	средний
1.1,ОПК-	решения задачи	2) Вычислить шаг спуска α;	1 7
1.2, ОПК-1.3	многомерной	3) Проверка критерия окончания	
	минимизации	итераций;	
	методами спуска в	4) За очередной приближение принять	
	порядке логического	смещение на вектор $\alpha \vec{p}$ относительно	
	следования.		
OHIC		предыдущего приближения.	U
ОПК-	14. Указать	1) Метод покоординатного спуска;	низкий
1.1,ОПК-	единственный метод	2) Метод наискорейшего спуска;	
1.2, ОПК-1.3	многомерной	3) Метод Ньютона;	
	минимизации,	4) Методы прямого поиска.	
	относящиеся к группе		
	градиентных методов.		
ОПК-	15. Выбрать	1) Многочленами Лагранжа;	низкий
1.1,ОПК-	единственный	2) многочленами Чебышева;	
1.2, ОПК-1.3	правильный ответ.	3) Многочленами Ньютона;	
	Таблицу разделенных	4) сплайнами.	
	разностей необходимо		
	вычислять при		
	интерполяции		
	функции		
ОПК-	16. Указать схему,	1) Правая разностная схема;	низкий
1.1,ОПК-	аппроксимирующую	2) Левая разностная схема;	
1.2, ОПК-1.3	первую производную	3) Центрально- разностная схема.	
	функции со вторым		
	порядком точности.		
ОПК-	17. Вставить	1) первым:	низкий
1.1,ОПК-	пропущенное слово в	2) вторым;	
1.2, ОПК-1.3	предложение:	3) третьим;	
	«Квадратурные	4) четвертым.	
	формулы,	_	
	применяемые для		
	аппроксимации		
<u> </u>	T	I .	

значения	
определенного	
интеграла, обладают	
порядком	
точности	
относительно шага	
сетки.»	
ОПК- 18. Выбрать 1) Явный метод Эйлера:	средний
1.1,ОПК- численные методы 2) Неявный метод Эйлера;	1 / \
1.2, ОПК-1.3 решения 3) Метод Эйлера-Коши;	
обыкновенных 4) Усовершенственный метод Эйлера.	
дифференциальных	
уравнений,	
обладающие вторым	
порядком точности	
относительно шага	
сетки по	
пространственной	
переменной.	
	средний
15. Deserve optim)	среднии
1.2, ОПК-1.3 схема 3) метода Эйлера-Коши;	
$\frac{y_{n+1}-y_n}{h}=f\left(t_n,y_n\right)$ 4) усовершенственного метода Эйлера.	
соответствует	
применению для	
решения	
дифференциального	
уравнения	
y (t) = f(t, y).	
ОПК- 20. Выбрать один 1) явного метода Эйлера:	средний
1.1,ОПК- ответ. Разностная 2) неявного метода Эйлера;	* '''
1.2, ОПК-1.3 схема З) метода Эйлера-Коши;	
4) масранизматрамиста мата на Эймара	
$\left \frac{y_{n+1} - y_n}{h} = f(t_{n+1}, y_{n+1}) \right ^{4}$ усовершенственного метода Эилера.	
соответствует	
применению для	
решения	
дифференциального	
уравнения	
y (t) = f(t, y).	