Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Серго Мехайовичье средства для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 20.06.2025 06:17:01

Подземная гидродинамика, 7 семестр Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Код, направление подготовки	03.03.02
Направленность (профиль)	Цифровые технологии в геофизике
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра экспериментальной физики

Типовые задания для контрольной работы:

1. Фильтрационно-емкостные параметры коллекторов

Задание 1

Для величины пористости m=30% (для 1 варианта) и диаметра частиц d=0,20 мм определить удельную поверхность S_{уд} фиктивного грунта, радиус пор идеального грунта R, проницаемость к идеального грунта, удельную поверхность и проницаемость реального грунта.

Залание 2

Куб с ребром 1м наполнили шарами диаметром 10 см каждый, а куб с ребром 1 см точно также уложили шарами диаметром 1 мм каждый. Пористость, какой засыпки больше? Ответ обоснуйте.

2. Закон Дарси

Залание 1

Определить коэффициент фильтрации, проницаемость и скорость фильтрации, если известно, что площадь поперечного сечения горизонтально расположенного образца песчаника F=40см², длина образца L=20 см, разность давлений на входе жидкости в образец и на выходе Δh =0,1ат, удельный вес жидкости γ = 1000 кг/м³, динамический коэффициент вязкости μ =5 спз и расход Q равен 10 см³/мин.

Примечание: необходимо учесть, что при стандартных условиях удельный вес жидкости $\gamma_{pT} = 1360 \text{ kg/m}^3$.

Задание 2

Определить скорость фильтрации и среднюю скорость движения газа у стенки гидродинамически совершенной скважины, если известно, что приведенный к атмосферному давлению объемный расход газа $Q_{ar}=0.8$ млрд м³/сут, радиус скважины $r_c=0.12$ м, мощность пласта h=30 м, его пористость m=20%, абсолютное давление газа на забое $p_c=50$ ат.

Задание 3

Через два однородных образца пористой среды, содержащих глинистые частицы, с целью определения коэффициента проницаемости и коэффициента фильтрации пропускали:

- а) пресную воду при $t=25^{\circ}C$ при перепаде давления $\Delta h=200$ мм рт. ст. с расходом Q=4 см³/мин,
- в) соленую воду с удельным весом γ =1103 кг/м³ и вязкостью μ =2 спз при той же разности давления, что и в первом случае и с расходом Q=0,2 см³/с. Размеры образцов: длина L=10 см, площадь поперечного сечения F=10 см².

Найти отношение коэффициентов проницаемости и фильтрации для случаев **а** и **в**. В каком из случаев полученные коэффициенты имеют меньшие значения и почему? Ответ обоснуйте. Учесть, что при температуре $t=25^{\circ}$ С для пресной воды $\gamma=1100$ кг/м³, $\mu=1$ спз, удельный вес жидкости при стандартных условиях $\gamma_{\rm pr}=1360$ кг/м³.

Задание 4

Определить скорость фильтрации и среднюю скорость движения при плоскорадиальной фильтрации газа к скважине в точке на расстоянии r=20 м от центра скважины, если давление в этой точке равно p=90 ат, мощность пласта h=15 м, пористость его m=30%, а приведенный к атмосферному давлению дебит $Q_{a\tau}=1,5$ млрд m^3/cyt .

3. Границы применимости закона Дарси

Задание 1

Определить значение числа Рейнольдса по выражениям Павловского, Щелкачева и Миллионщикова у стенки гидродинамически несовершенной по характеру вскрытия нефтяной скважины, если известно, что эксплуатационная колонна перфорирована, на каждом погонном метре колонны прострелено 10 отверстий диаметром $d_0=20$ мм, мощность пласта h=10м, проницаемость пласта k=2 д, пористость m=20%, коэффициент вязкости нефти $\eta=5$ спз, плотность нефти $\rho=870$ кг/м³ и дебит скважины составляет 150 м³/сут. Сравнить полученные значения числа Рейнольдса с критическими значениями и сделать соответствующие выводы.

Задание 2

Определить радиус призабойной зоны $r_{\kappa p}$, в которой нарушен закон Дарси, при установившейся плоско-радиальной фильтрации идеального газа, если известно, что приведенный к атмосферному давлению дебит скважины $Q_{a\tau}=2$ млрд m^3 /сут, мощность пласта h=20 м, проницаемость k=1,2 д, пористость пласта m=25%, динамический коэффициент вязкости газа в пластовых условиях $\eta=0,02$ спз, плотность газа при атмосферном давлении и пластовой температуре $\rho_{\it am}=0,7$ кг/ m^3

Примечание. В решении использовать число Рейнольдса по формуле М. Д.

Миллионщикова
$$Re_{\kappa p}=rac{u_{\kappa p}
ho\sqrt{k}}{m^{1.5}\mu}$$
 и за $Re_{\kappa p}$ взять нижнее значение $Re_{\kappa p}=0.022.$

Залание 3

Дебит газовой скважины, приведенный к атмосферному давлению при пластовой температуре Q_{ar} =2•10⁶ м³/сут, абсолютное давление на забое p_c =100ат, мощность пласта h= 20 м, коэффициент пористости пласта m= 25%, коэффициент проницаемости k=1,6 д, средний молекулярный вес газа M=18, динамический коэффициент вязкости в пластовых условиях η = 2,5 спз, температура пласта 45°C.

Определить, имеет ли место фильтрация по закону Дарси в призабойной зоне совершенной скважины радиусом r_c = 10см. Молекулярный объем газа составляет 22,4 моль/л.

4. Установившаяся потенциальная одномерная фильтрация

Задание 1

Определить давление на расстоянии 20 и 200 м от скважины при плоскорадиальном установившемся движении несжимаемой жидкости по линейному закону фильтрации. Будем считать, что проницаемость пласта $k=1,5\,$ д, мощность пласта $h=20\,$ м, давление на забое скважины $p_c=80\,$ ат, радиус скважины $r_c=12,4\,$ см, коэффициент вязкости нефти $\mu=6\,$ спз, плотность нефти $\rho=0,870\,$ т/м 3 и весовой дебит скважины G=180т/сут.

Задание 2

Определить время t, за которое частица жидкости подойдет к стенке скважины с расстояния r_0 =300 м, проницаемость пласта k=1,5 д, вязкость нефти μ =5 спз, депрессия во всем пласте радиусом R=1 км составляет Δp =20ат, мощность пласта h = 20 м, пористость пласта m = 25%, радиус скважины r_c = 10 см.

Задание 3

Как изменится дебит скважины **Q** при увеличении радиуса скважины втрое?

- 1) Движение происходит по линейному закону фильтрации.
- 2) Фильтрация происходит по закону Краснопольского.

Начальный радиус скважины r_c =0,1 м. Расстояние до контура питания R_κ =5 км.

Задание 4

Найти изменение перепада давления Δp при увеличении радиуса скважины вчетверо, при котором дебит остается прежним. Рассмотреть два случая, как в предыдущем задании. Начальный радиус скважины r_c =0.1 м, расстояние до контура питания R_κ = 1 км.

Задание 5

Во сколько раз необходимо увеличить радиус скважины, чтобы дебит ее при прочих равных условиях утроился?

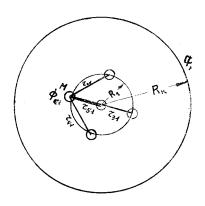
- 1) Движение жидкости происходит по закону Дарси.
- 2) Жидкость фильтруется по закону Краснопольского.

Начальный радиус скважины $r_c=0,1$ м. Расстояние до контура питания $R_\kappa=1$ км.

5. Движение жидкости в пласте с неоднородной проницаемостью

Задание 1

Определить дебит дренажной галереи при установившейся фильтрации жидкости по закону Дарси в неоднородном по проницаемости пласте, если известно, что проницаемость пласта на длине $\mathbf{l_1} = 2$ км постоянна и равна $\mathbf{k_1} = 800$ мд, а на длине $\mathbf{l_2} = 500$ м в призабойной части пласта уменьшается линейно от значения $\mathbf{k_1}$ до значения $\mathbf{k_2} = 80$ мд. Давление на контуре питания $\mathbf{p_k} = 100$ ат, давление на забое галереи $\mathbf{p_r} = 75$ ат, динамический коэффициент вязкости $\mathbf{p_r} = 5$ спз, мощность пласта $\mathbf{h} = 15$ м, ширина фильтрационного потока $\mathbf{B} = 600$ м.


Задание 2

По данным предыдущей задачи найти распределение давления в пласте.

6. Установившаяся плоская фильтрация жидкости. Интерференция скважин

Задание 1

Определить дебит батареи из четырех скважин расположенных вдали от контура питания, и одной скважины, находящейся в центре (см. рисунок), если известно, что все скважины находятся в одинаковых условиях: радиус батареи R_1 =200м, расстояние до контура питания R_{κ} =10км; радиус скважины r_{c} =0,1м; мощность пласта h=10 м, потенциал на контуре питания ϕ_{κ} =40 см²/сек; потенциал на скважине ϕ_{c} =30 см²/сек.

Типовые вопросы к зачету с оценкой по дисциплине «Подземная гидродинамика»

- 1. Модели фильтрационного течения, флюидов и коллекторов
- 2. Основные характеристики пористой среды (пористость, просветность, проницаемость). Истинная средняя скорость и скорость фильтрации, связь между ними. Параметры трещинной среды.
- 3. Закон Дарси. Нижняя и верхняя границы применимости закона Дарси для пористой среды. Критерии применимости закона Дарси для пористой среды.
- 4. Потенциал поля скоростей и выражение для закона Дарси через потенциал. Основное уравнение потенциального фильтрационного течения.
- 5. Закон Дарси для трещинной среды. Критерии применимости закона Дарси для трещинной среды.
- 6. Характерные особенности трещинно-пористой среды. Система дифференциальных уравнений для трещинно-пористой среды.
- 7. Внешние и внутренние граничные условия для дифференциального уравнения относительно потенциала. Замыкающие соотношения.
- 8. Прямолинейно-параллельный поток. Плоскорадиальный поток. Радиально-сферический поток. Примеры.
- 9. Общее дифференциальное уравнение потенциального одномерного потока. Выражения для потенциала и дебита плоскорадиального, прямолинейно-параллельного и радиальносферического течений.
- 10. Потенциал несжимаемой жидкости в недеформируемом (пористом) пласте.
- 11. Потенциал несжимаемой жидкости в деформируемом (трещинном) пласте.
- 12. Потенциал упругой жидкости в недеформируемом пласте.
- 13. Потенциал сжимаемой жидкости (газа) в недеформируемом (пористом) пласте.
- 14. Уравнение Дюпюи.
- 15. Коэффициент продуктивности. Размерность.
- 16. Депрессия и воронка депрессии.
- 17. Индикаторная зависимость и индикаторная диаграмма.
- 18. Нарисовать и объяснить графики давления, скорости фильтрации для несжимаемой жидкости в пористом и трещинном пластах.
- 19. Нарисовать и объяснить графики давления, скорости фильтрации для несжимаемой жидкости и газа в пористом пласте.

- 20. Нарисовать и объяснить индикаторные диаграммы для несжимаемой жидкости в пористом и трещинном пластах. В каких координатах надо строить диаграммы, чтобы получить прямолинейные зависимости.
- 21. Нарисовать и объяснить индикаторные диаграммы для несжимаемой жидкости и газа в пористом пласте. В каких координатах надо строить диаграммы, чтобы получить прямолинейные зависимости.
- 22. Соотношение дебитов реального и совершенного газов при одинаковых условиях.
- 23. Принципиальное отличие зависимости для дебита упругой жидкости от несжимаемой.
- 24. Виды несовершенств скважины. Совершенная скважина.
- 25. Приведенный радиус. Относительное вскрытие.
- 26. Радиус зоны влияния несовершенств по степени и характеру вскрытия.
- 27. Влияние радиуса скважины на её производительность при линейной фильтрации и различных типов одномерного течения.
- 28. Основные параметры теории упругого режима.
- 29. Коэффициент упругоёмкости пласта.
- 30. Коэффициентом пьезопроводности для упругой жидкости.
- 31. Коэффициентом пьезопроводности для газовых пластов.
- 32. Параметр Фурье.
- 33. Уравнение пьезопроводности упругой жидкости.
- 34. Приток к скважине в пласте неограниченных размеров (упругий режим).
- 35. Приток к скважине в пласте конечных размеров в условиях упруговодонапорного и замкнутоупругого режимов.
- 36. Периодически работающая скважина.
- 37. Определение коллекторских свойств пласта по данным исследования скважин нестационарными методами.
- 38. Неустановившаяся фильтрация газа в пористой среде. Уравнение Лейбензона.